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Pseudorandom Number Generation With
Self-Programmable Cellular Automata

Sheng-Uei Guan and Syn Kiat Tan

Abstract—We propose a new class of cellular automata, self-
programming cellular automata (SPCA), with specific application
to pseudorandom number generation. By changing a cell’s state
transition rules in relation to factors such as its neighboring cell’s
states, behavioral complexity can be increased and utilized. Inter-
play between the state transition neighborhood and rule selection
neighborhood leads to a new composite neighborhood and state
transition rule that is the linear combination of two different map-
pings with different temporal dependencies. It is proved that when
the transitional matrices for both the state transition and rule se-
lection neighborhood are nonsingular, SPCA will not exhibit non-
group behavior. Good performance can be obtained using simple
neighborhoods with certain CA length, transition rules, etc. Cer-
tain configurations of SPCA pass all DIEHARD and ENT tests with
an implementation cost lower than current reported work. Output
sampling methods are also suggested to improve output efficiency
by sampling the outputs of the new rule selection neighborhoods.

Index Terms—Cellular automata, pseudorandom number
generation.

I. INTRODUCTION

RANDOM numbers are needed in a variety of scientific,
mathematical, engineering, and industrial applications in-

cluding cryptography, Monte Carlo simulations [11], etc. Math-
ematical measures are available to prevent wrong simulation re-
sults caused by inappropriate pseudorandom number generators
(PRNGs). Statistical tests are conducted to ensure a PRNG pro-
duces numbers that are uniformly distributed, uncorrelated with
extreme long periods. Still, finding a good PRNG is a difficult
task [11], [12]; it is known that every PRNG has to fail in a
certain simulation/statistical test, in certain setup models that
interfere with the particular regularities of a given RNG and
exhibits the hidden correlations between numbers [11]. Hence,
PRNG must be carefully matched to the problem at hand. In the
past decade, cellular automata (CA)-based PRNG were studied
extensively [7] and found to be superior over traditional ap-
proaches in areas ranging from built-in self-test [8], [10] to cryp-
tography [2]–[4], [12]–[18], etc.

The majority of research on CA-based PRNG has been fo-
cused on the one-dimensional (1-D) CA with nearest three-cell
neighborhood, also known as elementary CA [1]. Recently,
there is a research trend such that increased complexity from
hybrid CA cell configurations and increased CA dimension-
ality can lead to better performance. Researchers have tried
to improve their results by designing new configurations with

Manuscript received June 9, 2003; revised October 30, 2003. This paper was
recommended by Associate Editor N. K. Jha.

The authors are with the Electrical and Computer Engineering Department,
National University of Singapore, Singapore (e-mail: sg_1_1@yahoo.com).

Digital Object Identifier 10.1109/TCAD.2004.829808

hybrid cell rules [10], [14], [16] and new boundary conditions,
as shown in [4]. Even though CA dimensionality is not directly
related to the PRNG problem area as compared to image
processing, spatial/temporal simulations [22], etc., researchers
have also experimented with increasing the CA dimensionality
to obtain better results [12]–[18]. The neighborhood of two-
dimensional (2-D) CA leads to better performance is shown in
[14], where the authors have improved randomness results over
their original 1-D CA work [13].

While the above research direction is headed toward the ex-
ploration of increased dimensionality and rule combinations, we
believe providing dynamic cell behavior can also produce inter-
esting results. By changing the cell’s state transition rules in re-
lation to factors such as its neighboring cell’s states, behavioral
complexity can be increased and utilized in certain applications.
In previous work [16], [17], we confirmed the feasibility of such
an approach and achieved comparable results to the work in
[14]. For the new approaches mentioned above, all the improve-
ments come at a cost; the increased complexity is brought about
by using more cells, additional external mechanisms, or using
decimated sampling methods which reduce output throughput
(see Section II-B). In this paper, we continue our work based
on a reduced-complexity model using substantially fewer cells
with 100% output sampling while maintaining comparable ran-
domness test results.

In Section II, we review the work done on utilizing various
forms of CA for PRNG applications. Section III explains the
operations of our new proposal—the self-programming cellular
automata (SPCA). The experimental setup and testing criteria
used in this paper is shown in Section IV and the results obtained
are examined in Section V. We show ways to further improve
the output efficiency of SPCA in Section VI and conclude in
Section VII.

II. BACKGROUND

A. Cellular Automata

A 1-D binary CA is an array of cells (registers)
where each cell’s state and

. During each discrete time step, each cell of the CA
updates its state using a transition rule based on a prespecified
Boolean function applied to the current states of each cell’s
state transition neighborhood .
The conventional nearest three-cell state transition neighbor-
hood, having a radius , consists of the cell itself and
its left/rightmost neighbors . A CA can be uniform,
with the same set of state transition neighborhood/rules are
used for each cell, or hybrid, where each cell can use a different
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Fig. 1. Four-bit UCA 90 implemented in hardware.

TABLE I
DETAILS OF LINEAR/ADDITIVE RULE 90, 165, 150, 105

set. For convenience, we denote a uniform CA with rule
as “UCA X,” while a hybrid CA with rule and is “HCA
X/Y.” For example, UCA 90 in Fig. 1 represents a uniform CA
with rule 90.

The -bit global state of a CA at time can be denoted as
vector . The states of a CA during each discrete time step is
successively sampled to form a pseudorandom number stream

. This approach qualifies the CA as an iter-
ative PRNG. In this paper, by dealing with only linear/additive
CA rules, more specifically only rules 90, 150, 165, and 105
shown in Table I (see [1] for rule naming convention), we can
use the matrix algebra tools developed in [5]. We can then define
a state transition matrix for a CA, denoted as . It is an -by-
square matrix, with each row representing the state transition
neighborhood dependencies for each cell, an entry of “1” means
dependency and “0” otherwise. The next global state vector is
then calculated uniquely by . For example, if

, with the state
transition matrix defined as

All arithmetic is performed over .
In this paper, we only consider CA with null boundary condi-

tions where the leftmost/rightmost cells receive a fixed “0” input
from its “supposed” left/right neighbors, respectively. Boundary
conditions details are found in [9].

B. Programmable Cellular Automata

Programmable cellular automata (PCA) [6], [12]–[18] allows
spatial and temporal variations in the state transition rules within
a CA, according to some external control scheme. This equates
to dynamically changing the state transition matrix . Through
an appropriate selection of state transition rules and the trio of
logic gate/connection/control signal wirings, a number of rules
can be programmed into the operation of the PCA. Fig. 2 shows
the PCA shown with four programmed state transition rules,

Fig. 2. PCA programmable with rule 90/150/165/105.

denoted as PCA 90/150/165/105. A cell uses rule 90 when its
switch A is open and switch B is open. The PCA architecture
is also flexible in emulating different hybrid CA configurations
instead, by applying a fixed control signal.

Our motivation is to design a CA with a lesser cell count that
can pass DIEHARD. The 1-D nearest three-cell neighborhood
rule 90 and rule 150 are among the most well-studied combi-
nations in the literature for PRNG purposes. We build on top
of rule 90 or 150 CA a more elegant form of PCA, with control
signals derived from the PCA itself via a new different neighbor-
hood, for a dynamic change of state transition rules in each cell.
Varying the behavior of a cell on the conditions of its neighbor-
hood allows for a more dynamic behavior to emerge. This pro-
vides a new direction of research in increasing the complexity
of CA, aside from the conventional approaches of increasing the
dimensionality and neighborhood size [14], [16]. We will show
in this paper there are several ways to derive control signals
from within the same CA, and in quite a few examples they pro-
duce good PRNG with good ENT and DIEHARD results (see
Section V).

III. SELF-PROGRAMMABLE CELLULAR AUTOMATA

Fig. 3 shows an SPCA cell programmable with rules
90/150/165/105. Similar to a conventional PCA, it has a local-
ized state transition neighborhood for updating cell states and a
new rule selection neighborhood for selecting rules. For a state
transition neighborhood, it uses the nearest three-cell neighbor-
hood having a radius and linear rule combinations. The
rules are programmable by the control lines (dashed).

The increased complexity of SPCA lies in the presence of the
additional rule selection neighborhood (could be wider than the
nearest three-cell, which is nonlocal here, in the general sense),
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Fig. 3. SPCA cell.

for the purpose of dynamic rule selection. This new rule selec-
tion neighborhood can be defined with any linear/additive rule.
The output of the rule selection neighborhood controls the be-
havior of the cell, switching it between the two state transition
rules programmed.

By using rule 150/105 (and similarly for 90/165 and other
complementary rule combinations), the state transition neigh-
borhood connections differ by only one NOT gate at the output.
At the same time, the state transition neighborhood connections
of rule 150/105 and 90/165 differ only by the self-dependency
on the cell itself. This similar structure with elegance and sim-
plicity in changing between these four rules motivates us to
study the effect of switching between rules 90 and 165 (or rules
105/150) on the CA’s state transitions. If all four rules are pro-
grammed into an -length PCA, a total of different hybrid
CA rule combinations can be produced.

In this paper, we considered two SPCA having uniform cells
with the following two rule combinations: SPCA 90/165 and
SPCA 150/105. The other possibilities such as hybrid SPCA
or four-rule SPCA have a higher search space associated for
locating better configurations; hence, they are better considered
in our future work using genetic algorithms.

Let denote the cell states at time interval
, and is the selected state transition rule for cell at

time ; is the rule index for cell at time and we
denote as the binary rule vector at time . Then,

and Rule 1 Rule 2 is selected
using the output of each cell’s rule selection rule. Every cell’s
state transition rule then changes for each time interval, due to
the rule selection mechanism.

Each SPCA can be characterized by its state transition matrix
and rule selection matrix. When we switch between a pair of
complementary state transition rules for each cell, the next state
of the CA is obtained as . In this case,

has a value of “0” for each cell using the linear rule and a “1”
for each cell using the complemented rule. The rule vector
is then updated as . This leads to the definition
of another transition matrix for the SPCA. To differentiate
and avoid confusion between these two matrices, is defined
as the rule selection matrix for determining the next rule vector,

Fig. 4. Mapping of states of the SPCA.

while the state transition matrix defined previously is denoted
. Furthermore, we have the following initialization factors.

• is the initial value loaded into the global states of the
-cell SPCA.

• is the corresponding initial rule vector (note that
can also be equal or derived from ).

Execution of the SPCA is as follows.

1) An initial -bit global state is loaded into the -cell
CA.

2) An initial -bit rule vector is loaded (or derived from
) into the -cell CA.

3) Each cell calculates and updates its next internal state
synchronously, based on its neighborhood’s current states
and the current state transition rule.

4) Each cell then calculates and selects its next transition
rule synchronously, based on its neighborhood’s current
states and the rule selection matrix .

5) Repeat step 3) and 4).
In SPCA, we have used temporal dependencies to create more

behavioral complexity. There is a separate set of registers that
holds the value of , which is used for the derivation of

. The general formula is as follows [note that all arithmetic
is performed over the binary field ]:

and are initialization values, also known as initial
seeds. The initial two values for and , are one-time
values used for initializing the sequence. For , the se-
quence value at each time step is obtained as a linear com-
bination of two separate mappings on two lagged values of ,
as depicted in Fig. 4.

In PRNG applications, one important criterion is for genera-
tors to produce long nonrepeated sequences and there is a need
to avoid CA with graveyard states [7] , which
leads to a sequence of constant numbers being produced. Also
known as nongroup CA, they have a singular transition matrix

, i.e., . For a linear/additive CA to have group prop-
erties, that is for all such that the cycle length
is , the transition matrix must be nonsingular, i.e.,
such that , . A maximal length CA has
a nonsingular state transition matrix and the characteristic poly-
nomial of is irreducible and primitive.

Theorem 1: If and are nonsingular matrices, then the
corresponding SPCA will not exhibit nongroup behavior.

Proof: Assume is the first time instance where
takes on a graveyard state such that for all .
A graveyard state has 1 possible preceding state, besides
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being self-looping. Thus, if is the first time instance of
the graveyard state, then denotes a possible
preceding state leading to the graveyard state

(1)

Note: I is the identity matrix.

(2)

So from (1) and (2)

Since is nonsingular, then leads to
a contradiction; hence, graveyard states will not exist in the
model. In this paper, is defined with rule 150/105 or 90/165.
As an initial investigation of SPCA properties, is defined
with the following rule: XOR of any two time-lagged cell states

over a neighborhood radius of 3. Formally stated,
, , and , . This

leads to a total of 21 rule selection neighborhoods (rule selec-
tion matrix ) to be explored.

IV. EXPERIMENTAL SETUP

In this section, we describe the CA and SPCA used for testing
with the ENT [19] and DIEHARD [20] randomness test suites.
The test index-name lookup is provided in Table II, and detailed
descriptions of each test can be found in the given references.
Tests 1–3 are from the ENT suite while tests 4–22 are from
DIEHARD.

In each of the tests conducted, we draw bits from the -cell
CA at each time step. The DIEHARD test suite requires a min-
imum of 10 Mb of random numbers, so each CA is executed for

time steps. The ENT test suite requires fewer num-
bers, but we execute the test with the same 10 Mb sequence for
convenience. Two sets of ten initial seeds are used with each CA
generating 20 different sequences for testing. Set A contains ten
seeds with some “structure” and Set B has ten “pseudorandom”
seeds. This allows us to examine if the CA exhibits autoplectic
behavior [10].

The ENT and DIEHARD results of some UCA and maximal
length HCA are also presented here for comparison. To the best
of our knowledge, there is no explicit study in the literature com-
paring the results of randomness tests such as ENT [19] and
DIEHARD [20] on sequences produced by maximal-length CA
and nonmaximal length CA. Maximal-length CA have advan-
tages such as long period and start value independence.

V. EXPERIMENTAL RESULTS

In Tables III–V, the ENT results and DIEHARD results are
averaged over 20 sequences. Standard deviation values are also
given for the DIEHARD results of SPCA. Based on these em-
pirical results from the ENT and DIEHARD randomness test
suite, an SPCA’s performance can exceed that of a conventional
CA for PRNG purposes.

TABLE II
INDEX OF ENT AND DIEHARD TESTS USED

Table III shows us some surprising results. Maximal length
property of the HCA 90/150 is not sufficient to ensure good
performance in DIEHARD—the sequences consistently fails 16
out of 18 DIEHARD tests. Increasing the CA length, which
increases the sequence’s cycle length exponentially does not
help, suggesting that those 16 DIEHARD tests are evaluating on
other aspects of randomness beside cycle length alone. For ENT,
entropy is maximum as expected—these sequences contain all
nonzero numbers in the range. Serial correlation coefficient
(SCC) values are also very good, close to zero. The chi-square
results with values very close to 0.0000 or 1.0000 are poor, in-
dicative of a nonrandom sequence.

UCA 90 and 150 also produces poor results in both
DIEHARD and ENT. All sequences failed to pass a single
DIEHARD test. The ENT results shown are poor as well. From
the ENT results, uniform rule 90 and 150 CA are found to be
dependent on the initial values used for generating sequences.

Table IV shows the best results attainable using SPCA
90/165 and SPCA 150/105. Results were much better com-
pared to the rest of the experiments. Entropy is at a maximum,
while SCC shows very low correlation in the sequences. Other
than the 16-cell SPCA, the rest of the configurations have
chi-square results near the maximum value. This coincides
with the DIEHARD results where SPCA with more than 16
cells passes 18 DIEHARD tests.

Several configurations passing all 18 DIEHARD tests and
having excellent ENT results were shown in Table V. Although
we used an averaging method for ENT results and majority
voting for DIEHARD, we did not observe any significant de-
viation in results produced by the 20 different sequences for
each CA. Standard deviation values were low ( 0.4) for the
good performing SPCA passing 17 DIEHARD tests, while the



GUAN AND TAN: PRNG WITH SELF-PROGRAMMABLE CA 1099

TABLE III
ENT AND DIEHARD RESULTS OF MAX-LENGTH HCA 90/150, UCA 90, AND UCA 150

TABLE IV
ENT AND DIEHARD RESULTS OF SPCA 90/165 AND SPCA 150/105

poor performing SPCA have higher varying standard deviation
values.

No time spacing or regular site spacing schemes [10] were
used during output sampling yielding no reduction in output ef-
ficiency. This is, however, offset by the possible lowered speed
of operation due to the longer cell connection wiring in certain
configurations. One possible remedy is rearranging cells in a
2-by- structure, where the state transition neighborhood uses
the nearest three cells in the same row while the rule selection
neighborhood uses the nearest three cells in the other row.

For the SPCA 90/165, performance is not proportional to in-
creased CA length and this is due to the singularity of the state
transition matrix formed using rule 90/165 as the length of the
matrix changes. However, for certain lengths, configurations
passing all ENT and DIEHARD tests exist and such configura-
tions can be cost effective compared to the SPCA 150/105 coun-
terparts in terms of throughput and area (see Table VI).

The cycle length of a PRNG determines its suitability for a
particular application. We have tested for minimum cycle length

using the best SPCA configurations shown in Table V. Twenty
different 1-Gb sequences were generated from each SPCA listed
and no cycles were detected in any of the sequences.

In Table VI, we show the throughput performance and area
requirements of several SPCA configurations. The results
are obtained from Synopsys Design Analyzer [23] with the
c35_CORELIB library. For both SPCA and LFSR, the area
requirement is proportional to the length of the required PRNG.
The maximum clock speed for the SPCA is dependent on the
type of transition rules used as well as the propagation delay
through cascades of logic gates and is independent of the CA
length. As expected, SPCA 90/165 has both higher throughput
and lower area due to its two-input transition rule.

Although SPCA 90/150 provides better throughput and lower
area, it does not pass DIEHARD for all length 18 to 24 cells.
However, SPCA 150/105 consistently produces good perfor-
mance in both DIEHARD and ENT. Suitable SPCA rule se-
lection neighborhoods for good DIEHARD/ENT performance
do not necessarily come at a performance–cost tradeoff. Con-
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TABLE V
CONFIGURATIONS PASSING ALL DIEHARD AND ENT TESTS

TABLE VI
THROUGHPUT AND AREA OF SPCA

sider the 21-cell SPCA with rule 150/105 (refer to Table V). This
CA has a similar performance to the longer 22, 23, and 24-cell
SPCAs, yet it only requires a shorter ( 1, 0) rule selection
neighborhood compared to the longer cell SPCAs’ longer 3
connections and the associated complexity of wiring. The rule
selection neighborhood yielding good DIEHARD/ENT perfor-
mance varies differently with the SPCA type and length and
contributes some cost in terms of wiring area. Multiobjective
genetic algorithms can then be further utilized to locate a suit-
able configuration [17].

Finally, we compare in Table VII some of the best CA-based
PRNG reported in the literature. Due to differences in experi-
mental setups amongst researchers, we cannot claim a totally
fair comparison, e.g., no standard deviation results given for
some of these CA. The SPCA has advantages of efficiency in
terms of size and throughput over the other CA.

VI. OUTPUT EFFICIENCY

To increase output efficiency, one approach is by sampling the
output of the rule selection neighborhood , resulting in two
times the original throughput. does not require as input
for all and is usually generated at , immediately after
and before . Thus, it is feasible to provide increased output
throughput with the SPCA. Using SPCA 150/105, we repeated

TABLE VII
DIEHARD RESULTS OF OTHER CA-BASED PRNGS

Fig. 5. Improved efficiency using sampling output method A and B.

TABLE VIII
ENT AND DIEHARD RESULTS OF OUTPUT SAMPLING METHODS A AND B

the DIEHARD experiment in the previous section. We tried two
different output methods depicted in Fig. 5, and the results in
Table VIII show some of the best performing minimal-cost rule-
selection neighborhoods of each method using cell lengths from
18 to 24.

Method A samples the output of each CA cell followed by the
output of its rule selection neighborhood. Using method A, all
18 DIEHARD tests can be passed using a minimum of 21 cells
(which yield a 42-bit stream at each time step). Output type B
achieves comparative results only at lengths 19 and 23, which
samples all the CA cells followed by all the rule selection neigh-
borhood outputs. Most of the rule selection neighborhoods for
both output types A and B require the longer 3 cell connec-
tions. Such a scheme should only be considered for applications
with lowered security requirements, since the output of the rule
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selection neighborhood can be considered as the internal state
of the PRNG and hence ideally should not be exposed.

VII. CONCLUSION

We have shown how complex behavior can be produced by
introducing dynamic state transition rules via an additional rule
selection neighborhood. For an SPCA, the interplay between the
state transition neighborhood and rule selection neighborhood
leads to a new composite neighborhood and state transition rule
that is the linear combination of two different mappings with
different temporal dependencies. It is proved that when the tran-
sition matrices for both the state transition and rule selection
neighborhood are nonsingular, the SPCA will not exhibit non-
group behavior. All possible 21 rule selection neighborhoods
were examined in this paper, and it can be concluded that good
performance can be obtained using simple neighborhoods with
certain interdependent conditions: CA length, state transition
neighborhood/rules. The SPCA is shown to produce pseudo-
random number sequences that pass all DIEHARD and ENT
tests with an implementation cost lower than other works re-
ported in the literature. The CA uses either decimated sampling
methods which reduced the PRNG throughput or a high cell
count (64-cell) compared to SPCA 150/105’s 21 cells. Output
sampling methods were also suggested to improve output effi-
ciency by sampling the outputs of the new rule selection neigh-
borhoods. The future direction of this work lies in the develop-
ment of SPCA for other possible rule combinations and hybrid
cell makeup within the SPCA.
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